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Abstract 

 

Inverse radiation transport focuses on identifying the configuration of an unknown radiation 

source given its observed radiation signatures.  The inverse problem is traditionally solved by 

finding the set of transport model parameter values that minimizes a weighted sum of the 

squared differences by channel between the observed signature and the signature predicted by 

the hypothesized model parameters.  The weights are inversely proportional to the sum of the 

variances of the measurement and model errors at a given channel.  The traditional implicit 

(often inaccurate) assumption is that the errors (differences between the modeled and observed 

radiation signatures) are independent across channels.  Here, an alternative method that accounts 

for correlated errors between channels is described and illustrated using an inverse problem 

based on the combination of gamma and neutron multiplicity counting measurements. 
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1.  INTRODUCTION 
 

 

Analysis of radiation measurements for nonproliferation frequently employs nonlinear regression 

to fit a model of the unknown source to a multivariate observed signature (e.g., gamma 

spectrum) [1]. Physics-based models are used to compute a radiation signature that is conditional 

on the values of the model parameters.  Typically, the regression solver estimates the model 

parameters by minimizing a scalar chi-square metric that is a function of the sum of squared 

differences, by channel, between the observed and computed signatures.  The chi-square metric 

weights the contribution of each channel in the radiation signature according to its error variance.  

However, the standard chi-square metric does not account for error covariance between the 

channels of the signature.  The difference between the observed signature and the modeled 

signature is due to three sources: model specification error, measurement error, and model 

parameter estimation error.  Treatment of model specification errors, i.e., errors arising from an 

incorrect choice of the model form, is beyond the scope of this paper; we will treat the latter two 

sources of error. The magnitudes of the remaining two error sources can be characterized by their 

covariances: the measurement error covariance and the model parameter error covariance.  This 

paper focuses on incorporating estimates of the measurement error covariance and model 

parameter error covariance in the solution of the inverse transport problem.  The methodology 

described herein is illustrated with an example combining gamma and neutron multiplicity 

counting measurements. 
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2. METHODOLOGY FOR SOLVING INVERSE PROBLEM 
 

2.1 Statistical Models and Summary of Approach 
 

Let {𝑌𝑖 = 𝜇𝑖 + 휀𝑖, 𝑖 = 1,2, ⋯ , 𝑞} and {�̂�𝑖 = 𝜇𝑖 + 𝜆𝑖 , 𝑖 = 1,2, ⋯ , 𝑞} respectively denote the 

observed and computed signatures.  In this representation, q is the number of channels, 𝜇𝑖 is the 

true (expected) intensity in the i
th

 channel, 휀𝑖 is the measurement error of the i
th

 channel, and 𝜆𝑖 is 

the model error of the i
th

 channel.  The expected value of the measurement error is zero for each 

channel, and the covariance of the measurement errors (across channels) is denoted by 𝑉   It is 

assumed that the model form is properly specified, so that 𝜆𝑖 is solely due to imprecise 

estimation of the model parameters.  The expected value of the modeling error is zero in each 

channel, and the covariance of the errors in the computed signature is denoted by 𝑉𝜆. 

An iterative procedure is used to solve the inverse transport problem.  The procedure starts 

with initial guesses for the physics model parameters and the two covariance matrices, 𝑉  and 𝑉𝜆.  

Conditioned on the total covariance of the difference between values of �̂� and 𝑌 (given by 𝑉 =

𝑉 + 𝑉𝜆), generalized nonlinear least squares regression is used to re-estimate the physics model 

parameters by minimizing 𝑍 =
1

𝑞
∙ 𝐷 ∙ 𝑉−1 ∙ 𝐷𝑇, where 𝐷 = �̂� − 𝑌. The uncertainty of the re-

estimated model parameters is propagated to the predicted signature, forming a revised estimate 

of  𝑉𝜆 (and therefore a revised estimate of 𝑉). Physics model parameters are re-estimated using 

the revised version of 𝑉. 

The quadratic form that is minimized (𝑍) depends on 𝑉  and 𝑉𝜆.  While  𝑉𝜆 evolves as a 

consequence of the iterative process, 𝑉  must be estimated empirically.  A straightforward 

approach for obtaining an estimate of 𝑉  is to utilize replicate measurements of the unknown 

source. Given a set of r replicate measurements, 𝑌𝑟 (q by r), the measurement error covariance 

matrix is estimated by [2]  

�̂� =
1

(𝑟−1)
∙ ∑ (𝑌𝑘 − �̅�𝑟) ∙𝑟

𝑘=1 (𝑌𝑘 − �̅�𝑟)𝑇, 

where 𝑌𝑘 (q by 1) is the k
th

 replicate measured signature, and �̅�𝑟 is the mean of the r replicate 

measured signatures. 

 

2.2 Parameter Estimation Process 
 

The computed signature is a function of a set of p estimated model parameters, �̂�𝑖 =

𝑓(𝑖; �̂�1, �̂�2, ⋯ , �̂�𝑝) .  Assuming that the functional form of the model is correct, it is implicitly 

assumed that there is an unobservable set of model parameters that represent 

truth:{𝑏1, 𝑏2, ⋯ , 𝑏𝑝}.  The deviations between the estimated model parameters and true 

parameter values are represented by {𝛿1, 𝛿2, ⋯ , 𝛿𝑝}. The associated covariance of {𝛿1, 𝛿2, ⋯ , 𝛿𝑝} 

is denoted by 𝑉𝛿. The objective is to find the set of model parameters that minimizes 𝑍.  The 

process begins with a set of initial estimates (guesses) for the model parameters, measurement 
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error covariance (𝑉 ), and model error covariance (𝑉𝜆).  Denote these estimates by {�̂�1, �̂�2, ⋯ , �̂�𝑝}, 

�̂� , and �̂�𝜆.  A summary of the estimation process is as follows. 

 

1. Let �̂� = �̂� + �̂�𝜆. 

2. Compute the Cholesky decomposition of �̂� 

  1ˆ  VDecompCholeskyC   
1ˆ  VCCT
 

3. Transform Y, Ŷ , and D : TCYZ  ,
TCYZ  ˆˆ , T

Z CDD   

 Model output is transformed: ZY ˆˆ   

 Measurements are transformed: ZY   

4. Use the Levenberg-Marquardt (LM) algorithm [3] with Z , Ẑ , and the current estimate 

of the model parameters to update the estimated model parameters: {�̂�1, �̂�2, ⋯ , �̂�𝑝} 

 Use nonlinear least-squares regression of Ẑ on Z to minimize TT

Z DD   

 The transformation (C) converts a generalized least-squares regression problem 

to an ordinary least squares regression problem (see below). 

             YCYCCYCYYYCCYYYYVYYDD TTT
TT

Z

T

Z
ˆˆ ˆˆ ˆˆ           1  

 

5. Obtain an estimate of V (denoted by V̂ ) from the LM algorithm. 

6. STOP if the elements in {�̂�1, �̂�2, ⋯ , �̂�𝑝} did not change significantly since the previous 

iteration 

7. Use V̂ and the sensitivity of Ŷ to perturbations in the model parameters to propagate 

uncertainty from the physics model parameters to the computed signature in order to 

obtain an updated version of V̂ . [If desired, update V̂  based on the re-computed 

signature.] 

8. Return to 1. 

 

 

2.3 Error Propagation 
 

The following strategy can be used to provide an updated version of �̂�𝜆.   

Suppose the current values of the model parameters are {�̂�1, �̂�2, ⋯ , �̂�𝑝}.  Select levels of 

perturbation for each parameter:  jb . First, compute the first-order effect of perturbing jb̂  on 

iŶ  by a small amount given by jb : 

1. ij  = 
   

2

ˆ,,ˆ,ˆ,ˆ,,ˆˆˆ,,ˆ,ˆ,ˆ,,ˆˆ
111111 pjjjjipjjjji bbbbbbYbbbbbbY   

  

for qi ,,2,1  and pj ,,2,1  . 

2. Normalize the first-order effects:
j

ij

ij
b


 . 

3. Assume the unknown errors in the current values of {�̂�1, �̂�2, ⋯ , �̂�𝑝}, given by 

p ,,, 21   are distributed with      , ,0 2

jjj δVarδE  and   '', jjjj cδδCov  .    
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By assuming the effects of small perturbations of the model parameters ( p ,,, 21  ) on the 

computed signature are approximately linear and additive, a simple approximation of the i
th

 

element of the computed signature at the perturbed conditions is given by 

    ipippi bbbYbbbY   ˆ,,ˆ,ˆˆˆ,,ˆ,ˆˆ
212211  , where 




p

j

ijji

1

 is the propagated error in 

the i
th

 element of the computed signature.  The expected value of i  is zero.  The diagonal 

elements of V  are given by 

    





jj'
pj

jjijijj

p

j

ijiii cσCovVar
:1

''

2

1

2 2 ,  .  

The (i, i')
th

 element of V  is given by                 

   





jj
pj

jjjiijjiijjji

p

j

ijii cσCov

'
:1

'''''

2

'

1

'   . 

 

This simple strategy has been implemented in MATLAB (see functions param_sens.m and 

error_prop.m in the Appendix). 
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3. IMPLEMENTATION 
 

The estimation process has been implemented in MATLAB (see Appendix). 

  

Two external codes (GADRAS [4] and nlinfit.m [5]) were used extensively within the MATLAB 

implementation.  GADRAS was called extensively (within MATLAB) to compute the radiation 

signature given values of the physics model parameters.  Prior to calling GADRAS, current 

model parameters were written to an input file.  GADRAS read the model parameters from the 

input file, computed the signature (based on the model parameters), and wrote the computed 

spectrum to an output file.  When control was returned to MATLAB, the computed spectrum 

was retrieved (see kernel_call_pn.m in the Appendix). 

 

MATLAB’s implementation of the Levenberg-Marquardt algorithm for nonlinear regression, 

nlinfit.m, was used to estimate the model parameters given the transformed measurements (Z) 

and the transformed computed spectra ( Ẑ ). 

 

In general, the implementation was very straightforward.  However, there were some issues that 

required special attention.  In particular, the derivative step size needed to assess the sensitivity 

of the spectrum to perturbations of model parameters (used in both nlinfit.m and param_sens.m) 

needed to be set at a level greater than what was originally anticipated (possibly reflective of the 

level of numerical precision within GADRAS).  In addition, nlinfit.m apparently does not allow 

the derivative step size to vary for each model parameter. 
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4. ILLUSTRATIVE EXAMPLE USING A MULTI-SENSOR SIGNATURE 
 

The proposed methodology has been used to solve inverse radiation transport problems for cases 

involving gamma spectra [6].  Here, we consider an example where the radiation signature 

consists of a combination of simulated gamma and neutron multiplicity counting measurements.  

Note that gamma spectroscopy and neutron multiplicity counting measurements are 

complementary.  While gamma spectroscopy is highly specific to nuclear composition, internal 

features of the source cannot always be resolved due to self-shielding in special nuclear material 

(SNM).  Neutron multiplicity counting measurements are used to estimate integral properties of 

special nuclear material (SNM), including: neutron source strength, neutron multiplication, and 

neutron generation time [7].  Hence, neutron multiplicity counting measurements can only 

estimate bulk system properties such as mass and multiplication.  However, since neutrons 

transport through SNM more easily than photons, it can help resolve internal features of the 

source.  Thus, an inverse solution based on the combined observation and analysis of a gamma 

spectrum and a neutron multiplicity counting measurement from the source should match 

features of both observables.  The solution can reveal both the nuclear composition of the source 

as well as its bulk configuration. 

 

For this simulated example, the source of the radiation signature is a plutonium sphere with a 

radius of 3.794 cm imbedded in a shell of polyethylene with thickness of 3.81 cm.  The radius of 

the plutonium sphere and the thickness of the polyethylene reflector/moderator that is 

surrounding it are the parameters in the physics model to be estimated.  The radiation signature 

consists of 270 channels: 246 gamma channels augmented with 24 Feynman-Y channels.  The 

Feynman-Y signature, given by  
 
 

1
2







t

t
tFY




, measures the variance observed in the 

neutron counting distribution that is in excess of the variance expected for a Poisson distribution 

[7].  It depends on the duration of the counting time (i.e., the “coincidence gate” width), t.  

Figure 5 displays the Feynman-Y signature associated with a simulated 4-second observation of 

the source. 
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Figure 1. Feynman-Y signature of a plutonium sphere imbedded in polyethylene. 

 

 

Two important features of the Feynman-Y signature are the asymptotic value achieved for long 

coincidence gate widths and the shape of rise from zero to the asymptotic value [7].  The 

Feynman-Y measurement is based on the observation of a stream of neutron count data, 

       ,mX,,X,X 21 , where X(m) is the number of neutrons observed in the m
th

 time epoch. 

Suppose that each time epoch is of length dt.  Then,  
 
 

1
2


dt

dt
dtFY




, where      and 2 dtdt 

are the counting statistics derived directly from        ,mX,,X,X 21 . Likewise, 

 
 
 

1
2

2
2

2







dt

dt
dtFY




, where     2 and 2 2 dtdt   are the counting statistics derived from 

        ,XX,XX 4321  .  Given this formulation, it is easy to understand how the elements 

within the set of Feynman-Y measurements,       ,...dtF,dtF,dtF YYY  32 , are correlated. 

 

As an aside, the stream of neutron count data can be approximated by a discrete-time branching 

process with two sources of neutrons (one source from spontaneous production, the other from 

chain reactions).  That is, X(m) is distributed as a Poisson random variable with an expected 

value (and variance) of  1 mXk  , where k is the expected number of neutrons produced 

spontaneously during each epoch and   1 mX  is the expected number of neutrons produced 

from chain reactions during the “m - 1” epoch.  If there is no fissile material present, then  = 0.  

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

Gate Width (microseconds)

F
Y
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The long-term process is stationary (sub-critical) only if  < 1.  See Pazsit and Pal [8] for 

detailed information on the statistics of neutron fluctuations.    

 

4.1 Estimation of measurement error covariance 
 

Solution of the inverse problem requires initial estimates for the measurement error covariance, 

V.  Here, due to the independence of the gamma and neutron multiplicity measurements, 

 

 








neutronV

gammaV
V






0

0
.  As described in [6], the errors in the gamma measurements are 

approximately Poisson-distributed and independent.  Thus,  gammaV  can be estimated via 

replicate measurements of the source. Here, initial estimates for the measurement error 

covariance specific to the net gamma spectrum,  gammaV  , are based on the initial estimates 

for the model parameters and a reference background spectrum (B). The observed gamma 

spectrum (O) consists of the combination of background and source signals.  The net gamma 

spectrum (Ygamma) consists of a background-corrected spectrum: BOYgamma  , where B is the 

reference background spectrum.  From the initial estimates of the model parameters, we obtain 

an initial estimate of the net spectrum,  initialŶgamma . The combination of B and  initialŶgamma  

was taken to be the expected intensity for O. Then, assuming independent Poisson counting 

statistics,      initialŶBBdiaggammaV̂ gamma . Throughout the iterative process, 

 gammaV̂ is modified to incorporate updated versions of gammaŶ .   

 

A simple way to estimate the measurement error covariance for the Feynman-Y signature is via 

replicate measurements.  Another way to estimate the measurement error covariance is to use the 

bootstrap re-sampling procedure [9] to create an ensemble of pseudo-replicates from a single 

observation.  Figure 2 displays the estimated measurement error covariance obtained by the 

bootstrap method for the Feynman-Y signature displayed in Figure 1.  In this case 200 pseudo-

replicates of the Feynman-Y signature were created.  Each pseudo-replicate was constructed by 

concatenating forty randomly selected 100 milli-second blocks (from the original 4-second 

simulated observation) into a 4-second observation.  The starting position for each block was 

randomly selected from a uniform distribution across the original 4-second observation. The 

block size is believed to be sufficiently large given that the steady-state variance (Feynman-Y 

asymptote) is reached within several milliseconds.  The measurement error covariance was 

estimated directly from these 200 pseudo-replicates. 



18 
 

 

Figure 2. Estimated covariance of Feynman-Y measurement error based on bootstrap. 

 

4.2 Results 
 

The iterative estimation process was initiated several times, each with a different set of initial 

guesses for the physics model parameters.  In each case, the initial estimate of  gammaV was 

based on the initial values of the model parameters.  In contrast,  neutronV̂ was based on a 

simulated stream of neutron count data.  Throughout the iterative process,  gammaV̂  was 

modified to incorporate updated versions of Ŷ . The estimated model error covariance ( V̂ ) was 

initially set to be the zero matrix.  In each case, the estimation process converged rapidly, within 

3 iterations. 

 

Figures 3 displays the evolved estimates of the diagonal elements of  gammaV  and 

 gammaV .  Figure 4 displays the diagonal elements of  neutronV̂  and the evolved estimates 

of the diagonal elements of  neutronV .  Except for a few gamma channels, the model error 

variances are inconsequential when compared to measurement error variances.  So, in this 

particular case, consideration of the model errors does not further constrain the solution.  This 

can be seen by comparing Figures 5 and 6.  These figures show the quadratic form, Z, as a 

function of the model parameters.  The two surfaces (relating to the initial and final [third 

iteration] estimate of V) are substantially the same.  
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Figure 3. Estimates of Measurement Error and Model Error Variances (gamma channels). 

 

Figure 4. Estimates of Measurement Error and Model Error Variances (Feynman-Y channels). 
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Figure 5. Z versus physics model parameters for initial iteration. 

 

 

Figure 6. Z versus physics model parameters for final (third) iteration. 
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Figure 7 displays the surface of the quadratic form, Z, for the final iteration of V when only 

gamma channels are used to solve this inverse problem.  Again, the surfaces displayed in Figures 

6 and 7 are substantially similar.  Thus, there is apparently no added benefit of including neutron 

measurements to solve this particular inverse problem.  However, it is likely that other problems 

might benefit from this approach. 

 

 

Figure 7. Z versus physics model parameters for third iteration (gamma channels only). 
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APPENDIX  – MATLAB CODES 
Driver script 
clear all; 

% get net gamma spectrum (truth) 

load gspectrum_truth.txt; 

y_gam=gspectrum_truth(12:257); 

  

% Get background gamma spectrum 

load background.gammaspectrum.txt; 

  

% background count time = 3X signal count time 

y_gamma_bkg=background_gammaspectrum(12:257); 

  

% form observed foreground and background gamma measurements 

obs_foreground = poissrnd (y_gam + y_gamma_bkg / 3.3); 

obs_bkg = poissrnd (y_gamma_bkg); 

  

% form observed net gamma measurement 

y_gamma = obs_foreground -obs_bkg/3.3; 

 

% get Feynman-Y measurement (truth) 

y_neu=neutron_interpolate('fspectrum_truth.txt'); 

  

% get covariance matrix of Feynman-Y signature 

load cvar; 

c=chol(cvar); 

  

% form observed Feynman-Y signature  

randn('seed',843809); 

err_neu=randn(1,24)*c; 

y_neutron=y_neu+err_neu'; 

  

% display net gamma measurement and observed Feynmann-Y signature 

figure; semilogy((1:246),y_gamma,'-*'); grid; 

xlabel('Channel Number','FontSize',20,'FontName','Times New Roman'); 

ylabel('Gamma Intensity','FontSize',20,'FontName','Times New Roman'); 

gate=[10 20 30 40 50 60 70 80 90 100 150 200 250 300 400 500 600 700 800 1000 1200 1400 1600 1800]'; 

figure; plot(gate,y_neutron,'*'); grid; 

xlabel('Gate Width (microseconds)','FontSize',20,'FontName','Times New Roman'); 

ylabel('F_Y','FontSize',20,'FontName','Times New Roman'); 

  

% concatenate gamma and Feynman-Y signatures 

s=[y_gamma; y_neutron]; 

% Specify initial guess for parameters with truth: b0=[3.794; 3.810] 

b0=[4; 4]; 

  

% Get estimate of spectrum based on initial guess of model parameters 

z_raw=kernal_call_raw(b0); 

  

% Set initial model error covariance 

v_lambda=zeros(270); 

 

% covar of feynman_Y 

load cvar; 

v_eps=zeros(270); 

bb(:,1)=b0; 

  

% Set options for nlinfit  

options=statset('Display','iter','DerivStep',.0003); 

  

for i=2:5; 

  

    % form measurement error covaraiance 

    v_eps(1:246,1:246)=diag(z_raw(1:246) + 2*y_gamma_bkg); 

    v_eps(247:270,247:270)=cvar; 

  

    if i > 2; 

        % Evaluate model output sensitivity to small perturbations in parameters  

        d_beta=[.0003; .0003]; 

        alpha=param_sens(b0,d_beta); 

  

        % Propagate model parameter error covariance into model spectrum error covariance   

        v_lambda=error_prop(alpha,covb); 

    end; 

  

    % Total covariance is sum of measurement/model error covariances 

    v_tot=v_eps+v_lambda; 

 

    % Transform net spectrum 

    c=chol(v_tot); 

    z_trans=c*s; 

  

    % Call nlinfit with  

    [beta,dum1,dum2,covb]=nlinfit(c,z_trans,@kernal_call_pn,b0,options); 

 

    % Retain current parameter estimates 

    bb(:,i)=beta; 

    b0=beta; 

  

    % Get new estimate of spectrum based on current estimates of model parameters 

    z_raw=kernal_call_raw(b0); 

end;  
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kernel_call_pn 

 

function z=kernal_call_pn(beta,c) 

% 

% 

%   PURPOSE: 

%   Provides transformed model spectrum. 

%    

%   SYNTAX: 

%   z=kernal_call_pn(beta,c);   

% 

%   OUTPUT VARIABLES: 

%   -(1) z-->q-vector of transformed model spectrum 

% 

%   INPUT VARIABLES: 

%   -(1) beta-->p-vector of model parameters 

%   -(2) c-->qxq matrix defining Cholesky transformation matrix 

% 

%   SEE ALSO: 

% 

%   FULL DESCRIPTION: 

%   1. Writes model parameter values into "source.params" file 

%   2. Calls Gadras kernal (using "source.params" as input) 

%   3. Retrieves gamma spectrum derived from Gadras from "gspectrum.txt" 

%   4. Retrieves feynman_y neutron spectrum derived from Gadras from "fspectrum.txt" 

%   5. Interpolates neutron spectrum into specific gates 

%   6. The retrieved spectra (gamma augmented with neutron) is transformed by c  

%   7. Transformed augmented spectrum is output 

 

fid=fopen('c:\gadras\detector\kernel\source.params','w'); 

fprintf(fid,'pu_thickness=%16.10E\r\n',beta(1)); 

fprintf(fid,'poly_thickness=%16.10E\r\n',beta(2)); 

fclose(fid); 

  

! cd c:\gadras\detector\kernel 

! C:\gadras\Kernel\Sandia.GadrasKernel.Application.exe source.params berp1p5.template gspectrum.txt fspectrum.txt 

pause(.01); 

  

load gspectrum.txt 

y_gamma=gspectrum(12:257); 

y_neutron=neutron_interpolate('fspectrum.txt'); 

y=[y_gamma; y_neutron]; 

  

z=c*y; 
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kernel_call_raw 

 

 

function y=kernal_call_raw(beta) 

% 

% 

%   PURPOSE: 

%   Provides model spectrum. 

%    

% 

%   SYNTAX: 

%   z=kernal_call_raw(beta);   

% 

%   OUTPUT VARIABLES: 

%   -(1) y-->q-vector of model spectrum 

% 

%   INPUT VARIABLES: 

%   -(1) beta-->p-vector of model parameters 

% 

%   SEE ALSO: 

% 

%   FULL DESCRIPTION: 

%   1. Writes model parameter values into "source.params" file 

%   2. Calls Gadras kernal (using "source.params" as input) 

%   3. Retrieves gamma spectrum derived from Gadras from "gspectrum.txt" 

%   4. Retrieves neutron spectrum derived from Gadras from "fspectrum.txt" 

%   5. Interpolates neutron spectrum into specific gates  

%   6. Concatenated signature is output 

% 

% 

%   REFERENCES: 

% 

%  

% 

fid=fopen('c:\gadras\detector\kernel\source.params','w'); 

fprintf(fid,'pu_thickness=%16.10E\r\n',beta(1)); 

fprintf(fid,'poly_thickness=%16.10E\r\n',beta(2)); 

fclose(fid); 

  

! cd c:\gadras\detector\kernel 

! C:\gadras\Kernel\Sandia.GadrasKernel.Application.exe source.params berp1p5.template gspectrum.txt fspectrum.txt 

pause(.03); 

  

load gspectrum.txt 

y_gamma=gspectrum(12:257); 

y_neutron=neutron_interpolate('fspectrum.txt'); 

y=[y_gamma; y_neutron]; 
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param_sens 

 
function alpha=param_sens(beta,d_beta) 

% 

%   PURPOSE: 

%   Computes partial derivatives of spectrum with respect to model parameters  

%    

% 

%   SYNTAX: 

%   alpha=param_sens(beta,d_beta); 

% 

%   OUTPUT VARIABLES: 

%   -(1) alpha--> qxp matrix of partial derivatives  

% 

%   INPUT VARIABLES: 

%   -(1) beta-->p-vector of model parameters 

%   -(2) d_beta-->p-vector of derivative step sizes for model parameters 

% 

%   SEE ALSO: 

% 

% 

% 

%   FULL DESCRIPTION: 

%   Computes partial derivatives of spectrum with respect to model parameters 

%   Uses call to GADRAS kernal that outputs untransformed spectra 

% 

%   REFERENCES: 

% 

[n,param_dim]=size(beta); 

  

b_upp=beta+d_beta; 

b_low=beta-d_beta; 

  

for j=1:n 

    b=beta; 

    b(j)=b_upp(j); 

    y_upp=kernal_call_raw(b); 

    b(j)=b_low(j); 

    y_low=kernal_call_raw(b); 

    alpha(:,j)=(y_upp-y_low)./(2*d_beta(j)); 

end; 
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error_prop 

 
function v=error_prop(alpha,covb) 

% 

%   PURPOSE: 

%   Propagates uncertainty from model parameters to computed spectrum 

%    

% 

%   SYNTAX: 

%   v=err_prop(alpha,covb) 

% 

%   OUTPUT VARIABLES: 

%   -(1) v-->qxq-matrix representing covariance of computed spectrum 

% 

%   INPUT VARIABLES: 

%   -(1) alpha-->qxp-vector of sensitivity of computed spectrum to  

%        perturbations of model parameters (obtained from param_sens.m) 

%   -(2) covb-->pxp covariance matrix associated with model parameter 

%        estimates (obtained from nlinfit.m) 

% 

% 

%   SEE ALSO: 

%   para_sens.m 

%   nlinfit.m 

% 

%   FULL DESCRIPTION: 

%   Uses first-order sensitivity of computed spectrum to perturbations 

%   of model parameters with uncertainty in model parameters to propagate  

%   uncertainty to computed spectrum  

% 

%   REFERENCES: 

% 

[q,p]=size(alpha); 

v=zeros(q,q); 

for i=1:q 

    for j=1:q 

        for k=1:p 

            v(i,j)=v(i,j)+alpha(i,k)*alpha(j,k)*covb(k,k); 

            if k>1 

                for kp=1:k-1 

                    v(i,j)=v(i,j)+(alpha(i,k)*alpha(j,kp)+alpha(i,kp)*alpha(j,k))*covb(k,kp); 

                end; 

            end; 

        end 

    end; 

end; 
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neutron_interpolate 

 
function y_neutron=neutron_interpolate(fname) 

% 

% 

%   PURPOSE: 

%   Takes GADRAS neutron output (with variable gates - in fname) and reformats to the 

%   indicated gate structure indicated in x by linear interpolation 

% 

%   SYNTAX: 

%   y_neutron=neutron_interpolate(fname);   

% 

%   OUTPUT VARIABLES: 

%   -(1) y_neutron-->24-vector of reformatted Feynman-Y signature 

% 

%   INPUT VARIABLES: 

%   -(1) fname-->filename containing output Feynman-Y signatue from GADRAS 

% 

%   SEE ALSO: 

% 

%   FULL DESCRIPTION: 

%   1. Inputs Feynman-Y spectrum output by GADRAS 

%   2. Interpolates Feynman-Y spectrum output by GADRAS to fixed gates  

%   3. Outputs reformatted Feynman-Y signature 

% 

% 

%   REFERENCES: 

% 

  

  

x=[10 20 30 40 50 60 70 80 90 100 150 200 250 300 400 500 600 700 800 1000 1200 1400 1600 1800]'; 

  

[nx,dum]=size(x); 

y_neutron=zeros(nx,1); 

  

fid = fopen(fname); 

a=fscanf(fid, '%g'); 

n=a(1); 

nn=2*n; 

aa=reshape(a(2:nn+1),2,n)'; 

fclose(fid); 

  

gate=aa(:,1); 

fy=aa(:,2); 

  

low_ind=1; 

for i=1:nx 

    while x(i) > gate(low_ind) 

        low_ind=low_ind+1; 

    end; 

    y_neutron(i)=fy(low_ind-1) + ( (x(i)-gate(low_ind-1)) / … 

        (gate(low_ind) - gate(low_ind-1)) )*(fy(low_ind)-fy(low_ind-1)); 

end; 
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